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A probabilistic theory of the strength of 
short-fibre composites with variable 
fibre length and orientation 
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This paper adopts a probabilistic approach to examine the effects of fibre length and 
orientation distribution on the strength of short fibre composites. A general theory has 
been formulated in terms of fibre length and orientation distribution function as well as 
the composite geometrical and physical properties. The final result is presented in the 
form of a modified "rule of mixtures". The result has been applied to discuss several 
special cases of fibre arrangements. They are (a) unidirectional short fibre composites 
with uniform fibre length, (b) unidirectional short fibre composites with fibre length 
distribution, (c) random short fibre composites with uniform fibre length and (d) 
partially-aligned short fibre composites with uniform fibre length. Comparisons of the 
present results with previous work are also discussed. 

1. Introduction 
Discontinuous fibre-reinforced composite materials 
have versatile properties and are relatively inexpen- 
sive to fabricate. In a typical injection moulded 
material, for instance, the fibres are relatively 
short, variable in length and imperfectly aligned. 
As discussed by Chou and Kelly [1, 2], the 
strength and failure behaviour of short fibre com- 
posites are complicated by the non-uniformity in 
fibre length and orientation. 

The "rule of mixtures" is often used to predict 
the strength of fibre-reinforced composites. For 
unidirectional continuous fibre composites, under 
the assumption of isostrain in the fibres and mat- 
rix, the rule of mixtures becomes [3, 4] 

o ~  = omVf  + o "  ( 1 - -  Vf), (1) 

where ocu and om are the ultimate strength of the 
composite and fibre, respectively, Vf denotes the 
fibre volume-fraction, and o "  is the matrix stress 
at the failure of the composite. 

In the case of unidrectional short fibre compo- 
sites, Equation 1 is modified as follows [3, 4] 

ocu = a~ V~F(&fi) + o" (1 - VO, (2) 

Here, the factor F(lcfi  ) is added to take into 
account the effect of fibre length, and l~ and [ 
denote fibre critical length and average length, 
respectively. If a constant interfacial shear stress 
and a uniform fibre length, 7, are assumed, this 
factor becomes 

= 1--le/21 ( l > l e )  
F(Iofi) (3) 

= i/2z~ ([ < &). 
If  the fibre length is not uniform, Equation 3 must 
be modified and this problem is the first objective 
of this paper. It should be noted at tiffs point that 
Riley [5] and Fukuda and Chou [6] have also 
dealt with the strength of unidirectional short 
fibre composites. Riley took into consideration 
the disturbance of fibre stress due to the presence 
of a fibre end. Fukuda and Chou advanced Riley's 
idea to a general case by introducing the theory of 
probability. However, in the present paper, we 
focus on the geometrical arrangement of fibres and 
the effect of stress redistribution is not considered. 

*On leave from the Institute of Space and Aeronautical Science, University of Tokyo, Japan. 

0022--2461/82/041003--09503.58/0 �9 1982 Chapman and Hall Ltd. 1003 



In actual short fibre composites, such as injec- 
tion moulded materials or sheet moulding com- 
pounds, however, there are variations not only in 
fibre length but also in fibre orientation. In cases 
when the fibres are misaligned, the rule of mix- 
tures is further modified to [7, 8] 

aeu = ofuVfFqeff)Co + a~(1 -- V~), (4) 

where the fibre orientation factor, Co, has hither- 
to been determined by experiments [7, 8] and 
there has been no theory to predict this value. 
However, if all necessary conditions with respect 
to the fibre orientation are known, Co can be esti- 
mated through a theoretical analysis. This is 
another goal of the present paper. Fukuda and 
Kawata [9 ] derived the "coefficient of alignment", 
Ca, which they used to predict the elastic modulus 
of misaligned short fibre composites. Although Co 
is somewhat different from Ca, the basic prob- 
abilistic approach described in [9] is still useful 
and it has been adopted in the present analysis. 

Bader, Chau and Quigly [ 10], and Fukuda and 
Chou [6] proposed the concept of "critical zone" 
in predicting the strength of unidirectional short 
fibre composites. The critical zone is defined by a 
pair of planes separated by a distance ~7, where/~ 
is a constant less than 1 and [ is the average fibre 
length, which cut across the section normal to the 
applied tensile stress and fibre alignment direction. 
They assumed that fibres which do not "bridge" 
the zone cannot contribute to the strength of the 
zone. This concept is expanded in the present 
paper to a problem with variable fibre orientation 
and length. It will be shown that a unidirectional 
fibre model is a special case of the present general 
model. 

In order to deal with the distributions of fibre 
length and fibre orientation, we have introduced 
two kinds of probability density functions. Then 
the composite strength, which is the ultimate goal 
of the research, should be given in the form of a 
probability density function. However, it is under- 
stood that in the present analysis the composite 
strength is derived only in the form of an average 
value. 

2. General theory 
2.1. Geometrical consideration on a single 

short fibre 
First, the geometrical arrangement of one short 
fibre is described. Fig. 1 shows an obliquely 
positioned short fibre of length, 1. In accordance 
with the terminology of [10], a bridging fibre and 
an ending fibre are defined as shown in Fig. lb; 
that is, if a fibre crosses a critical zone of width 
/~7, it is called a bridging fibre, and if the end of a 
fibre is within the critical zone, it is called an end- 
ing fibre. The probability density function of 
fibre length distribution, h(l), satisfies the follow- 
ing condition 

f o h ( / ) d l  = 1. (5) 

Then, the average fibre length is defined as 

From Fig. la, 

[ = f ; lh (Odl .  (6) 

tz = l cos 0.  (7)  

and from Fig. lc the critical angle, 0o, within which 
a fibre of length l is a bridging fibre becomes 

~ - . . - - -  i z - - - - - . - .~  
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bridging f ibre % ~ /  
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(o) (b) (c) 
r Figure 1 Several notations on short fibre arrangement. (a) obliquely oriented fibre, (b) bridging ~ibre and ending fibre, 

(c) critical angle. 

1004 



0o = cos  -1 ~3ill ( 8 )  

for /3[<~l. I f / 3 i> l ,  0o cannot be defined, and a 
fibre in such a case is inevitably an ending fibre. If 
the fibres are distributed randomly with respect 
to the z-azis, the probability, Pe, that a fibre of 
length, l, and orientation angle, 0, is an "'ending 
fibre" in the critical zone becomes 

/3i ( /3[/lcosO (O<O<~Ooand/3[<l)  

Pe = 1 7 = /  1 (Oo~<O~<Tr/2ort3[~>l), 

(9) 

and the probability, Pb, for finding a bridging 
fibre is, by definition, 

Pb = 1 - - p . .  (10) 

By assuming the distribution of the fibre orienta- 
tion to be symmetrical with respect to the applied 
tensile load along the z-axis, the probability density 
functions with respect to fibre orientation, g(O), 
should satisfy the condition 

f rrl2 g(O)dO = 1. (11) 

2.2. Load t ransfer  in shor t  f ib re  
First, a short fibre situated parallel to the applied 

tensile stress, ao, is considered, as shown in Fig. 
2a. The average fibre stress is 

1 rA'I 
= lJo of(z)dz. (12) Ill o 

Although there are several analyses on the fibre 
stress distribution [11-13] ,  the simplest model 
[3, 4] is applied here, as shown in Figs 2b and c. 
This model assumes that a constant interfactial 
shear stress acts in the regions of 0 <~ z <~ le/2 and 
l -- le/2 <~ z <<. l. Then, afo becomes 

: ( 1 3 )  

afo l (l < le) 
afu 2l Z 

The average force in a fibre is afoAf, where Af is 
the fibre cross-sectional area. 

Next, a single short fibre situated at an angle, 
0, to the applied stress is considered. From the 
equilibrium of applied force, the model of Fig. 3a 
is equivalent to that of Fig. 3b where 

o~ = ao cos20 ( t4)  

and 

, , , i t - -  

aio 

(a) 

....4,,0" 0 

(z) 

lc /2 I 
=- l ..4 

Z 
/ L  
L2 

l 

(b) l>  l 
e 

(c) [ '~ Z e 

Figure 2 Stress distribution of a fibre 
parallel to the applied tensile stress. 
(a) actual stress distribution, (b) and 
(c) simplified stress distribution. 
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(o) 
Figure 3 Applied stress to an obliquely oriented fibre. (b) 

(bl 
is equivalent to (a). 

ro = Oo sin 0 cos 0, (15) 

where r~ is the shear stress. If the effect of To on 
the fibre stress distribution can be neglected, 
the argument concerning Fig. 2 can be applied to 
an obliquely oriented fibre model by changing 
only Oo to 06 cos20. Then the average force of 
the fibre becomes A faro cos20 and the z-direction 
force component is 

Fz = A~clfo cos30. (I6) 

2.3. Strength of short fibre composites 
Based upon the above preparations, the strength 
of short fibre composites can now be derived. In 
the following discussion, h(l) and g(O) are assumed 
to be independent of each other. This means that 
g(O) is the same for all the samples with different 
fibre length distributions. Suppose a rectangular- 
shaped specimen with the lengths of the three 
mutually perpendicular edges denoted by a, b and 
c is considered. The e-axis is so chosen as to be 
parallel to the z-axis. The volume of the specimen 
is then 

V = abe, (17) 

and from the definition of fibre volume-fraction, 
Vf becomes 

Vf = NAf I /V ,  (18) 

where N and Af denote, respectively, the total 
number of fibres and the fibre cross-sectional area. 

Recall that Equation 7 gives the length of the 
projection of a fibre on the z-axis. Then the aver- 
age length of the projection of fibres can be 
written as 

-[z = f;/2(? l cos0 h(l)g(O) dldO 
dU J O  
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= l Jo g(O) cos 0 dO. (19) 

The value N1 z gives the total length of projection 
of all the fibres on the z-axis and if this value is 
divided by the specimen length, c, this gives the 
average number of fibres which cross an arbitrary 
section in the specimen normal to the z-axis. 
That is, 

_ Niz _ abVf r ~r/2 
Ne [ g(O) cos 0 dO. (20) 

c At d0 

Equation 9 is the probability of a specific 
fibre being an ending fibre. Therefore, based upon 
the assumption of constant fibre volume-fraction 
in any critical zone, the average value of proba- 
bility of finding an arbitrary fibre being an ending 
fibre is 

f~/21= qe =Jo Jo peh(l)g(O)dldO. (21) 

Similarly, the average value of the probability of 
finding an arbitrary fibre to be a bridging fibre is 

t, Tr,2/.oo 

qb =Jo Jo Pbh(t)g(O) ctldO 

= 1 - q o .  (22) 

Substituting Equations 9 and 10 into Equations 21 
and 22 gives 

qe =o~d0f_0 (0) h(l) dl + . . g(O) h(l) dl 
I COS O 

+ f " ' 2 [ g ( 0 ) h q )  cud0 
mo :r 

(23) 

and 



qb = t d /  1 lcos--0 g(O)hq)dO. (24) 

Then, the total numbers of ending and bridging 
fibres in the specimen are 

Ne = Ncqe (25) 

and 

N b = Neq b. (26) 

Strictly speaking, the value of Ne is not precise 
because we have only examined one cross-section, 
for example, AA' in Fig. lb; the fibres denoted 2 
and 3 in Fig. lb were not considered. However, 
our interest is to calculate the number of bridging 
fibres, which is not affected byNe in the subsequent 
discussions. 

Based upon Equation 16 for the z-direction 
component of the axial load of one specific fibre, 
the average value among the bridging fibres is 

Fz = ;:~162 dldO. (27) 

Then the total load that all of the bridging fibres 
can sustain in the zone fills 

FT = Nb "Fz (28) 

and the composite strength becomes 

Ocu = FT + o~ (1 -- Vr). (29) 
ab 

where the matrix is assumed to sustain part of the 
applied load. Substituting Equations 13, 16, 20 
and 23 to 28 into Equation 29, we finally obtain 

j~ b Ocu = ofuVrJoog(O) cos 0 dO (0) cos30 dO 

xf;7[f:~ /'cos fl-f O) g(O) dO] h(l) dl 

x[f~: ~ 2-~e h ( / ) d / + f ~  (1 - -~ / )  h(/) d/] 

+ a~n (1 -- Vf). (30) 

Equation 30 is a general strength expression of 
short fibre components. In order to conduct 
further analysis, it is necessary to know the 
functions g(O) and h(/) together with Oru, o~n, 
Vr and I c. 

3. Results and discussion 
First, the limiting case of a unidirectional compo- 

site with uniform fibre length is considered. The 
condition of unidirectional fibre arrangement 
requires that g(O) be a delta function at 0 = 0. 
Hence, we obtain 

and 

fO ~'/2 g(O) cosO dO = l, (31)  

cos 30 dO 1 (32) I:~ = 

Icos0  g(O) dO = l--ill~[. (33) 

Therefore, Equation 30 is reduced to 

f5 ');;' Oeu = aru Vr (1 -- fl]/l) h (I) dl ~e h q) dl 

+ 1 - - l e  h(l) dl +a~n ( l - - V 0 .  
e 

04)  

Furthermore, the condition of uniform fibre 
length means that h (l) is a delta function at 7 

f~7 (1 --~i/l)h(l)dl = 1--~ (all]) (35) 

and 

f h(l)dl +~lc (1--Ie/21)h(l)dl 

{ 1 - 1 r  ( 7 > l r  

l-/2lr (l < lr (36) 

Then, Equation 34 becomes 

ae = aguVr(1--/3) 1 - - - ~  +o~n(1 - -Vr )  

( />  le) (37) 
and 

7 
oo = ~ru vr (1 - t~)-z-, + G (1 - v 0  

Zte 

(i < lr (38) 

Equation:37 is identical to Equation 6 of [10] 
although different notations have been used and 
the second term of Equation 37 is omitted in 
Equation 6 of [10]. Consequently, the theory of 
[10] can be included in the present theory as a 
limiting case. 

Next, the effect of fibre-length distribution on 
composite strength for a unidirectional fibre model 
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is considered. We consider the limiting case of 
fl-~ 0, namely, all fibres are bridging fibres. Then, 
Equation 34 becomes 

'[fo !e l h(l)dl+f,: (1--~) h(l)dl] oou = o , , , v ,  

+ a'~ (1 - Vf). (39) 

The following probability density function is 
chosen for a case study 

7r 7rl h(l) = ~-~sin-~ ! (0 < l/[< 2). (40) 

This function satisfies both Equations 6 and 11. 
Substituting Equation 40 into Equation 39, and 
after some calculation, the following result is 
obtained: 

{ 2 - T r l c l r d e  oeu = O'fuVI + / s i n - ~ - + ~ - c o s  
2rd e 

+ o~n (1 -- V~), (41) 

where Si(X)is the integral sine function defmedby 

Si(X) = / x  sin t dt. (42) 
t 

The result of Equation 41 is shown as a solid in 
Fig. 4. In the case of constant fibre length, the 
strength can be obtained from Equations 2 and 3 
and the value is also shown in Fig. 4 by a broken 
line. It can be concluded from Fig. 4 that the 
strength of a composite material is reduced if the 
fibre length is not uniform. However, the difference 
between the present result and the ordinary theory 
is not very great and, hence, the ordinary theory 
may be used as a first approximation. 

,,~,f,,) 
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As another example the strength prediction 
based upon Equation 30, we examine the orienta- 
tion factor, Co, for random array composites. The 
fibre length is assumed to be uniform and is larger 
than I c. These assumptions lead to 

~/c l 
J~ ~ e  h (/) d/ = 0, (43) 

fzT(t--l--~)h(l)dl= 1 --le/2 '  (44) 

and 

] r 1 lcosO g(O)dO h(!)dl 

Then Equation 30 becomes 

1 le\ clr/2 
o ~  = o~uVf - ~ ) J o  g(O) cos 0 dO 

/ 

xg(0) d0 + o ' ( l  -- V~). (46) 

By comparing Equations 4 and 46, we arrive at 
the following expression for Co : 

c1rl~ 
dO f:* g(O) cos 3 0 dO Co = Jog(O) cos 0 

•176 c-~s0) g(O) dO. (47) 

: We consider both two-dimensional and three- 
dimensional random arrays. In a two-dimensional 
random array model, g(O) must be constant in the 
whole region of 0 ~< 0 ~< 7r/2. Then we can get 

Figure 4 Effect of fibre length 
on composite strength, F(le/l). 
Solid line: fibre distribution is 
considered; broken line: fibre 
length is assumed to be constant. 
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Figure 5 Fibre orientation fac- 
tor, Co, of random array model. 
Solid l ine:  two-dimensional 
random array; broken line: 
three-dimensional random array. 
Circled dot and squared dot are 
Cox's result. 

g(O) = 2hr (48) 

from Equation 11. Substituting Equation 48 into 
Equation 47 gives 

4 2+/32 [ 
- -  - -  - -  C O S - 1 / 3  Co 7r 2 3 (I-- /32)  I/2 2 

~r 

1 1+ (1 - - / 32 )  1/2 ] 
l og  1 - (1 ] " ( 4 9 )  

The solid line of Fig. 5 depicts this result. At the 
limit of/3 ~ 0, Co tends to 2/3(2fir) 2 = 0.270. On 
the other hand, Bowyer and Bader [7] used the 
value of 1/3 by quoting the result of Cox [11]. 
However, it should be noted that Cox obtained 
this value in calculating the orientation factor for 

the Young's modulus of a random composite. 
Cox's value is also shown in Fig. 5 by a circled dot. 

In the case of a three-dimensional random array 
model from Fig. 6, g(O) can be expressed as 

g(O) dO = dS/S (50) 

and, therefore, 

g(O) = sin0. (51) 

In this case, Equation 47 becomes 

Co = ~ (1--/32)(1 + /32 ) (1- -  /3 + /31og /3). (52) 

This value is also shown in Fig. 5 by a broken line. 
At the limit of /3-*0,  Co becomes 1/8 and this 
value is again a little smaller than Cox's result of 

z 

dS 

J r  

Figure 6 Some notations concerning the 
surface of a unit sphere. 
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1/6 (see Fig. 5). In both two- and three-dimensional 
cases, our results are smaller than those of Cox's 
for the effective moduli of short fibre composites. 
The significance of this difference is open to 
future discussions. 

It is rare in short fibre composites to find that 
all fibres are aligned unidirectionally. It is also rare 
that fibres are randomly oriented. The present 
theory is now applied to the intermediate fibre 
orientation. In order to avoid the complexity of 
a general model, we again start from Equation 47, 
that is, the fibre length is assumed to be constant. 
The following two types of fibre orientations are 
considered: 

(a)g(O)=l/a in O<<.O<~a and g(O)=O in 
O>a; 

(b) g(0)=n/2acos~r0/2a  in 0~<0~<a and 
g(O) = 0 in 0 > a .  

These functions are taken so as to satisfy 
Equation 11 and the shapes of these functions are 
shown schematically in Fig. 7. Note that g(O) does 
not mean the probability per unit area. The pro- 
bability per unit area is proportional to g(O)/sin O. 
The limit crf/3 ~ 0 is again considered. At this 
limit, 0o tends to rr/2 from Equation 8. Consider- 
ing this condition, Co is calculated from Equation 
26 for the two types of g(0) given above. 

For Type a 

s,n l(1 43--) lira Co - sin3a+ s i n c .  
~-~ .o  a O~ 

For Type b 

lira Co = 1 J 1 sinTr 
t~--,o 1--6 1 +----q ~- (1 + q) 

L 

+ l - q  [3 
1 + q  sin ~ (1 + q )  

3 7r 
+ 1 - - q - - S i n ' ( I - - q )  

, sin ( l + 3 q )  
+ l + 3 q  2- 

(53) 

+ 1 -- 3~---q sin -~ (1 -- 3q , (54) 

where q = 2a/rr. These values are shown in Fig. 7. 
Bower and Bader [7] estimated the value of C, 
which corresponds to Co of the present paper, 
by their experimental data. For laboratory glass- 
nylon injection-moulded materials, Co was 0.66. 
If we use a rectangular distribution for g(O), the 
value a, corresponding to Co = 0.66 is approxi- 
mately 45 ~ from Fig. 7. Although the distribution 

1 . 0  

C O O. 5 

0 

(2 a 

(b) (o) 

I I I I I I 
0 15 :30 4 5  60  75 9 0  

oE (deg) 

Figure 7 Value of C O for two types of distributions of fibre orientation. 
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of  fibre orientation is not  reported in [7].  Fig. 1 
of  [7] provides us with some useful information. 

Fig. 1 of  [7] shows the longitudnal section 
through an injection-moulded g lass -nylon  speci- 
men. I f  a fibre is inclined at an angle, O, from the 
longitudinal axis of  the specimen, an ellipse o f  the 
obliquely cut section o f  the fibre will appear in the 
figure. The ratio of  the major axis to the minor  
axis of  this ellipse is 1/sin 0. I f  we can determine 
g(O) from specimen cross-sections, Co can be 
calculated using Equation 30 in the general case or 
Equation 47 in the case of  uniform fibre length. 
We have taken the reversed route,  that  is, knowing 
the Co value, the scattering of  fibre orientation 
was estimated under the assumption of  g(O) 
being rectangular. Although further quantitative 
discussions are difficult at the present stage 
because of  the lack of  rigorous experimental 
information,  our theory is useful for estimating 

co. 
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